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Abstract
The energy transfer of a heavy ion due to electron–ion collisions in a magnetic
field is treated within perturbation theory both quantum mechanically and
classically. For the quantum treatment the unperturbed Landau levels are
represented either in a Cartesian or in a cylindrical basis. In both the cases
the classical limit of the quantum mechanical expression is investigated and
compared to the energy transfer in a fully classical treatment. It is demonstrated
that the classical limit is more transparent in the cylindrical coordinates than in
the Cartesian ones as the first case allows a connection to a classical description
in terms of the impact parameter.

PACS numbers: 52.40.Mj, 34.50.Bw, 03.65.Nk, 52.20.Hv

1. Introduction

The collisions of electrons with ions, the ion energy loss and related processes in a strongly
magnetized plasma are important in studies of the transport phenomena (see, e.g., [1] and
references therein), plasma heating and magnetic confinement of thermonuclear plasmas, as
well as a test of the theoretical aspects of these phenomena. In addition, the electron–ion
collisions in a strong magnetic field play an important role in the cooling of heavy-ion and
antiproton beams by electrons (or positrons) [2–4].

Numerical and analytical calculations have been performed for classical binary collisions
(BC) between magnetized electrons [5, 6] and for collisions between magnetized electrons
and ions [7–13]. As an ion is much heavier than an electron, its uniform motion is only
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weakly perturbed by collisions with the electrons. Hence for the electron–ion collision the
perturbation theory in the ion charge Z provides a useful information for small angle scattering.
This has been done previously in first order in Z and for an ion at rest [10] as well as in second
order for a uniformly moving ion [11–13]. The quantum mechanical BC theory has been
developed within stationary perturbation theory and has been used for the ions at rest [14–17].
Its nonstationary counterpart has been developed recently in [18].

Within a quantum mechanical BC formalism in this paper we investigate the ion energy
transfer due to collisions with electrons.

The interaction is considered as a time-dependent perturbation to the Landau states of the
magnetized electrons while the heavy ion moves classically. We start with the unperturbed
problem of a charged particle in a magnetic field which is formulated either in Cartesian
(CAR) or in cylindrical (CYL) coordinates [19]. Within the CAR approach the electron state
α is given by the parameters α = {n, σ, qy, qz} [19], where σ = ±1/2 is the spin variable,
n = 0, 1, 2, . . . is the Landau level, qz and qy are the electron momentum components along
and perpendicular to the external magnetic field B = Bez, respectively. In this geometry
the Schrödinger equation is reduced to the 1D equation for a shifted harmonic oscillator. In
CYL the electron state α = {ν; n; σ ; qz} (ν = 0;±1;±2 . . . is the angular momentum) and
corresponding wavefunctions differ from CAR. The momentum component qy in CAR is
replaced here by angular momentum ν. Because of the different electron states α in both
representations the BC treatment will describe different elementary collision processes which
finally result in different energy transfers. It is the main purpose to investigate the classical
limit of these quantum mechanical expressions obtained from CAR and CYL, and to compare
them with classical results. As the main outcome we will show that using CYL allows a
connection to the classical energy transfer as a function of the impact parameter. The use of
cylindrical coordinates is hence much more appropriate for the present scattering problem, as
it makes the transition to the classical description much more transparent.

2. Quantum mechanical energy transfer

We consider the electron–ion BC in the presence of a quantizing homogeneous magnetic field
B = Bez. The projectile heavy ion of mass M and charge Ze (−e is the electron charge)
moves with velocity vi . We assume a mass of the ion M � m such that a classical description
of its motion with a rectilinear trajectory is applicable. We assume that the particles interact
with the potential −e�ie(r − vi t), where r and vi t are the coordinates of the electron and ion,
respectively. For charged particles the function �ie(r) can be expressed, for instance, by the
Yukawa-type screened potential, �ie(r) = Ze exp(−r/λ)/4πε0r (λ is the screening length),
for application in plasmas (see [18] for more details).

Our starting point is the Schrödinger equation ih̄ψ̇ = Ĥψ, Ĥ = Ĥ 0 + Ĥ 1(t) with the
time-dependent perturbation Ĥ 1(t) = −e�ie(r − vi t) and the Hamiltonian of a free electron

Ĥ 0 = 1

2m
(p̂ + eA)2 + h̄ωcσ̂z, (2.1)

where ωc = eB/m and σ̂z are the cyclotron frequency and the spin operator, respectively.
We seek an approximate solution of the Schrödinger equation in which the interaction

potential is considered as a perturbation. We start with the zero-order unperturbed
eigenstates ψ(0)

α in the Landau state α which are described by the zero-order Schrödinger
equation Ĥ 0ψ

(0)
α = ih̄ψ̇ (0)

α . The unperturbed electron wavefunction can be represented as
ψ(0)

α (r, t) = ψ(0)
α (r) e−i
αt [19], where 
α = Eα/h̄, and Eα are the eigenvalues of the free

particles.



Correspondence between quantum mechanical and classical treatments 11075

We define the energy transfer of an electron which is initially in the αth Landau state as

�Eα = −e

∫ ∞

−∞
dt

∫
drρα(r, t)[vi · Eext(r, t)]. (2.2)

Here Eext(r, t) = −∇�ie(r − vi t) is the electrical field created by a moving ion, ρα(r, t) =
|ψα(r, t)|2 is the probability density for the electron in the αth state (−eρα(r, t) is the charge
density in αth state). Within first-order perturbation theory the electron probability density is
given by the wavefunction of the free particle. Then the first-order electron energy transfer
vanishes by the symmetry reason (see, e.g., [12, 18]). The second-order energy transfer is
proportional to the first-order probability density ρ(1)

α (r, t) which can be represented as

ρ(1)
α (r, t) = ψ(0)

α (r, t)ψ(1)∗
α (r, t) + ψ(0)∗

α (r, t)ψ(1)
α (r, t), (2.3)

where ψ(1)
α is the first-order perturbation of the electron wavefunction. This function is given

by [18]

ψ(1)
α (r, t) = e

h̄

∫
dk �ie(k)

∑
β

ψ
(0)
β (r, t)Sβα(k)

ei(
βα−ω)t


βα − ω − i0
. (2.4)

Here the infinitesimal i0 in equation (2.4) guarantees the vanishing of the electron wavefunction
at t → −∞. 
βα = 
β − 
α , ω = k · vi ,−e�ie(k) is the Fourier transformed two-body
interaction potential. The matrix Sβα is given by Sβα(k) = 〈β| eik·r|α〉 [20].

Using the relation Sβα(k) = S∗
αβ(−k), and substituting equations (2.3) and (2.4) into

equation (2.2) we arrive after some lengthy calculations at

�Eα = − (2π)2e2

h̄

∫
dk dk′ �ie(k′)�ie(k)(k · vi )δ(ω + ω′)

∑
β

Sαβ(k)Sβα(k′)δ(
αβ − ω),

(2.5)

where ω′ = k′ · vi , δ(x) is the Dirac function. The last expression is the quantum mechanical
electron energy transfer. Because of conservation of the total energy the ion energy transfer
is −�Eα . Note that equation (2.5) was obtained for any unperturbed wavefunctions ψ(0)

α (r).
We shall apply this general expression for CAR and CYL.

2.1. Cartesian basis (CAR)

In a Cartesian basis the vector potential of the magnetic field A is given by its components
Ax = Az = 0 and Ay = Bx. The eigenstates are labelled by α = {n, σ, qy, qz}, and the
unperturbed electron wavefunction in the Landau state α is [19]

ψ(0)
α (r) = 1

Lλ
1/2
B (2nn!

√
π)1/2

ei(qyy+qzz) e−ξ 2/2Hn(ξ)uσ (2.6)

with ξ = x/λB + qyλB . λB = (h̄/mωc)
1/2 is the magnetic length. A factor L−1 was

introduced for normalization reason (L is the normalization length). In equation (2.6) uσ is
the spin wavefunction, Hn is the Hermite polynomial and the eigenvalues of the free particles
Eα are given by

Enσ (qz) = h̄2q2
z

2m
+ h̄ωc

(
n + σ +

1

2

)
. (2.7)

Within the CAR treatment the matrix Sβα (k) can be written in the form [20]

Sβα(k) =
(

2π

L

)2

in
′−nδσσ ′δky+qy ;q ′

y
δkz+qz;q ′

z
e−ikxλ

2
B(qy+ky/2) ei(n−n′)θFnn′(ζ ) (2.8)
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with ζ = k2
⊥λ2

B

/
2 and tan θ = ky/kx . k⊥ is the component of k perpendicular to b = B/B.

The function Fnn′(ζ ) (n, n′ � 0) is given by [20]

Fnn′(ζ ) =
(

n!

n′!

)1/2

ζ (n′−n)/2 e−ζ/2Ln′−n
n (ζ ), (2.9)

Fnn′(ζ ) = (−1)n−n′
Fn′n(ζ ), and Ln′

n (ζ ) are the generalized Laguerre polynomials.
Substituting equation (2.8) into equation (2.5) within CAR we finally obtain

�ECAR
α = (2π)4e2

λ2
BvrmωcL2

∫
dk|�ie(k)|2(k · vi )

∞∑
l=−n

F 2
n;l+n(ζ )δ

(
ζl(k) +

k2
zλ

2
B

2
ωc

)
. (2.10)

Here ζl(k) = lωc + k · vr , vr = ve‖b − vi (ve‖ = h̄qz/m is the electron unperturbed classical
velocity component parallel to b) is the classical relative velocity of the guiding centre of the
electron helical motion with respect to the ion.

Now we consider the classical limit of equation (2.10). The classical regime can be
realized by the two limits λ2

B = h̄/mωc → 0 (ζ → 0) and n = E⊥/h̄ωc → ∞ (large
quantum numbers), where E⊥ = mv2

e⊥
/

2 is the electron classical energy perpendicular to
the magnetic field with ve⊥ = h̄qy/m. Besides we note that in this limit nζ → k2

⊥a2
/

4, where
a = ve⊥/ωc is the electron cyclotron radius. The limit of the function F 2

n;l+n(ζ ) at ζ → 0,
n → ∞ and nζ → k2

⊥a2
/

4 as found in appendix A is:

F 2
n;l+n(ζ )

∣∣
λB→0;n→∞ = J 2

l (k⊥a) + ζQl(k⊥a) + O(ζ 2), (2.11)

where Jl is the Bessel function of the lth order. The first term in equation (2.11) gives the
full classical limit. The second term gives a quantum correction. Also we should expand the
δ-function in equation (2.10) for small k2

zλ
2
B

/
2. We note that the first term of this expansion

in the summand of equation (2.10) (zero-order term over length λB) which is proportional to
J 2

l (k⊥a)δ(ζl(k)) vanishes due to the antisymmetrical behaviour of this expression with respect
to the changes l → −l and k → −k. The other nonvanishing terms contribute to the electron
energy transfer which leads to

−�ECAR
α → (2π)4e2

2mvrL2

∫
dk|�ie(k)|2(k · vi )

+∞∑
l=−∞

δ(ζl(k))

×
{

(k · b)2

ζl(k)
J 2

l (k⊥a) +
k2
⊥

2ωc

[
J 2

l+1(k⊥a) − J 2
l−1(k⊥a)

]}
. (2.12)

The last expression is the classical limit of the quantum mechanical CAR energy transfer. In this
case the classical energy transfer depends on ve⊥, ve‖ and vi . Note however that equation (2.12)
diverges logarithmically at large k or at small distances where the perturbative treatment is
not adequate. We should therefore introduce an upper cutoff kmax to avoid this divergency. In
addition, for a pure unscreened Coulomb interaction a lower cutoff kmin should be introduced
in equation (2.12). This procedure is equivalent to the screening of the Coulomb potential at
large distances by plasma electrons.

2.2. Cylindrical basis (CYL)

We now switch to another quantum mechanical formulation for the electronic states in the
external magnetic field. It is known that the Schrödinger equation for the free particle in the
presence of external magnetic field may also be represented in cylindrical coordinates. We
consider an electron with given angular momentum ν (ν = 0;±1;±2 . . .) and momentum
qz along the magnetic field. If we choose the axial symmetric vector potential in the form
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A = (1/2)[B × r] = (B/2)(xey − yex) or Aϕ = Bρ/2, Az = Aρ = 0 then the unperturbed
Schrödinger equation has the following solutions [19]:

ψ(0)
α (r) = 1

(2πL)1/2λB

[
n!

2|ν|(|ν| + n)!

]1/2

uσ eiνϕ eiqzz(2ξ)|ν|/2 e−ξ/2L|ν|
n (ξ). (2.13)

Here α = {ν; n; σ ; qz}, ξ = ρ2
/

2λ2
B, n = 0, 1, 2, . . . , ρ, ϕ and z are the cylindrical

coordinates. The energy of the free electrons in the αth CYL state is given by

Eα = En+ην ;σ (qz) = h̄2q2
z

2m
+ h̄ωc

(
n + σ + ην +

1

2

)
(2.14)

with ην = (ν + |ν|)/2, µν = (|ν| − ν)/2. At ν � 0 the electron energy is the same as Enσ (qz)

in the CAR basis (2.7).
Using wavefunctions (2.13) we calculate the matrix elements [21]

Sαβ(k) = 2π

L
iν

′−νδσσ ′δ(q ′
z − qz + kz) ei(ν ′−ν)θ�nn′;νν ′(k⊥λB), (2.15)

where β = {ν ′; n′; σ ′; q ′
z}. When the quantum numbers ν and ν ′ have different signs (νν ′ � 0)

the function �nn′;νν ′(y) is given by

�nn′;νν ′(y) = (−1)n+n′+ην+µν′ Fn;n′+|ν ′|

(
y2

2

)
Fn′;n+|ν|

(
y2

2

)
, (2.16)

where Fnn′ is defined by equation (2.9). In the opposite case when νν ′ � 0

�nn′;νν ′(y) = (−1)µν′ +µν Fnn′

(
y2

2

)
Fn+|ν|;n′+|ν ′|

(
y2

2

)
. (2.17)

The quantum-mechanical expression for the electron energy transfer has been derived
above (see equation (2.5)). Substituting equation (2.15) into equation (2.5) and using the
relations �n′n;ν ′ν(y) = (−1)ν

′−ν�nn′;νν ′(y) one finds

�ECYL
α = − (2π)3e2

h̄L

∫
dk dk′�ie(k′)�ie(k)(k · vi )δ(kz + k′

z)δ((k + k′) · vr )

×
∞∑

n′=0

∞∑
ν ′=−∞

(−1)ν
′−ν ei(ν ′−ν)(θ−θ ′)δ

(
ζην−ην′ +n−n′(k) − h̄k2

z

2m

)

×�nn′;νν ′(k⊥λB)�nn′;νν ′(k′
⊥λB). (2.18)

The last expression together with equations (2.16) and (2.17) gives the final result for
the quantum mechanical electron energy transfer within the CYL treatment. The classical
regime can be realized by the following limits: λ2

B → 0 and large quantum numbers ν → ∞
and n → ∞. Here two different regimes with positive or negative angular momentum can
be distinguished. In the first regime, ν � 0, ην = ν, the energy of an electron in the αth
Landau state is En+ν;σ (qz). The transition to classical mechanics therefore requires that
ν + n → mv2

e⊥
/

2h̄ωc = a2
/

2λ2
B → ∞, where a is the classical electron Larmor radius.

As will be shown below the quantum number n (which is always positive) is associated with
the classical impact parameter s according to the relation n → s2

/
2λ2

B → ∞. It will be
proven that the impact parameter within the quantum treatment must be quantized with the
quantum numbers n. As the number ν is positive here it thus requires s � a for ν � 0. Using
equations (2.16)–(2.18) we obtain for ν � 0:
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�ECYL
α = − (2π)3e2

h̄L

∫
dk dk′ �ie(k′)�ie(k)(k · vi )δ(kz + k′

z)δ((k + k′) · vr )

×
{ ∞∑

n′=−n

�n′+n;n(ζ, ζ ′)
∞∑

ν ′=−ν

(−1)ν
′
eiν ′(θ−θ ′)

× δ

(
ζν ′+n′(k′) +

h̄k2
z

2m

)
�n+ν;n′+ν ′+n+ν(ζ, ζ ′)

+
∞∑

n′=−(n+ν)

(−1)n
′
ein′(θ−θ ′)δ

(
ζn′(k′) +

h̄k2
z

2m

)
�n′+n+ν;n+ν(ζ, ζ ′)

×
∞∑

ν ′=1+ν+n′
(−1)ν

′
e−iν ′(θ−θ ′)�n;ν ′+n(ζ, ζ ′)

}
, (2.19)

where �pq(ζ, ζ ′) = Fpq(ζ )Fpq(ζ
′), ζ ′ = k′2

⊥λ2
B

/
2. In the classical limit this corresponds to

the energy transfer with small impact parameters, s � a.
In the second regime with ν � 0, ην = 0. The energy of an electron in αth state is

Enσ (qz) and the transition to classical mechanics requires n → a2
/

2λ2
B → ∞. Now with the

classical impact parameter s is associated the quantum number n − ν = n + |ν| according to
the relation n − ν → s2

/
2λ2

B → ∞. The case of negative ν thus requires s � a.
It can be proved that in the classical limit both expressions for the energy transfer with

ν � 0 and ν � 0 (equation (2.19)) are equivalent and therefore we consider here the classical
limit only for equation (2.19) with positive ν. The resulting classical expression will be valid
for s � a as well as for s � a. The limit of the function Fν;l+ν(z) at ν → ∞, z → 0 (but
νz → const) is given in appendix A. Using also the Taylor expansion of the Dirac δ-function
with respect to the small parameter λ2

B from equation (2.19) we obtain

−�ECYL
α → (2π)3e2

2mL

∫
dk dk′ �ie(k′)�ie(k)(k · vi )δ(kz + k′

z)δ((k + k′) · vr )

× J0 (q)

∞∑
l=−∞

(−1)l eil(θ−θ ′)δ(ζl(k′))Hl(k, k′), (2.20)

where q = |k⊥ + k′
⊥|s and

Hl(k, k′) = Jl(x)Jl(y)
(k · b)(k′ · b)

ζl(k′)
+

k⊥k′
⊥

ωc

×
[

l

x
Jl(x)J ′

l (y) +
l

y
Jl(y)J ′

l (x) + i sin(θ − θ ′)Jl(x)Jl(y)

]
. (2.21)

Here x = k⊥a and y = k′
⊥a. The zero-order term over λ2

B vanishes and did not contribute to
equation (2.20). This term changes its sign under the exchange k � k′ and should be omitted.
For the same reason in equation (2.21) some further terms also vanish after integration over k
and k′.

Let us note that in contrast to CAR the classical limit of CYL energy transfer diverges
only at large distances for an unscreened Coulomb interaction. The classical CYL expression
(2.20) depends on ve⊥, ve‖ and vi , and in addition on the impact parameter s. In this sense
the conformity between quantum and classical descriptions is more complete here than within
CAR. Since the purely classical problem does not depend on the specific coordinate basis one
can expect that two different limits, equations (2.12) and (2.20), correspond to the classical
energy transfer averaged over different sets of parameters. In the next section, we consider
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the corresponding classical problem and look for the connection with the classical limits of
quantum mechanical energy transfers.

3. Classical second-order energy transfer

As a basis for further consideration, we recall that the ion classical energy transfer �Ei(R0, ϕ)

during the collision with a magnetized electron should depend on the initial position R0 and
the initial phase ϕ of the electron helical motion [12]. We also introduce the variable s = R(r)

0⊥
which is the component of R0 perpendicular to the relative velocity vr of the electron guiding
centre. The vector s is the distance of closest approach of the guiding centre. Since the initial
phase of electrons and the azimuthal angle φ of s are not observable in quantum mechanical
treatment we therefore consider the ϕ, φ-averaged energy transfer. The first-order energy
transfer, which is proportional to the ion charge vanishes due to symmetry after averaging
with respect to ϕ and φ [12]. Hence the ion energy change receives a contribution only from
higher orders. The second-order energy transfer �E

(2)
i , which is proportional to Z2, was

found in [12]. Averaging this expression over the initial phase of the electrons results in

〈
�E

(2)
i

〉
ϕ

= π ie2

m

∫
dk dk′ �ie(k)�ie(k′)(k · vi )δ((k + k′) · vr ) ei(k+k′)·R0

×
+∞∑

l=−∞
(−1)l e−il(θ ′−θ)Jl(k⊥a)Jl(k

′
⊥a)Gl(k, k′), (3.1)

where Gl is given by

Gl(k, k′) = −2(k · b)(k′ · b)

(ζl(k′) − i0)2
− k · (k′ − b(k′ · b) − i[b × k′])

(ζl(k′) − i0)(ζl−1(k′) − i0)

− k · (k′ − b(k′ · b) + i[b × k′])
(ζl(k′) − i0)(ζl+1(k′) − i0)

. (3.2)

We consider now some averaged quantities which can be obtained from expression (3.1)
for the energy transfer. First, the ϕ-averaged ion energy change, equation (3.1), is integrated
over the 2D impact parameter s in the full space. Then one obtains that the classical limit
(2.12) corresponds to

−�ECAR
α → 1

L2
E1 ≡ 2π

L2

∫ ∞

0

〈
�E

(2)
i

〉
ϕ;φs ds. (3.3)

We now average the ϕ-averaged ion energy change over the variable z0 = b · R0, which
is the component of the vector R0 along the magnetic field, and with respect to the angle φ.
This gives the classical limit of the CYL energy transfer

−�ECYL
α → 1

L
E2(s) ≡ 1

L

∫ ∞

−∞
dz0

〈
�E

(2)
i

〉
ϕ;φ. (3.4)

Equations (3.3) and (3.4) for the averaged energy changes E1 and E2(s) have a different
physical meaning. The quantity E1 is proportional to the transport cross section for the classical
electron–ion scattering in the presence of an external magnetic field [12]. The second quantity
E2(s) is the classical energy transfer averaged over the all initial positions z0 of the electron
guiding centre. Therefore from the quantum mechanical treatment only the ϕ, φ, s (in CAR)
or ϕ, φ, z0 (in CYL) averaged classical energy transfers can be recovered because in quantum
mechanics only these quantities are observable and the electron angular orientation and initial
position of the guiding centre cannot be fixed.
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It should be noted that although the full quantum mechanical expressions (2.10) and
(2.18) may strongly differ from each other one can expect that for many-electron systems
the statistical averaged physical quantities are the same for both treatments. In particular, we
briefly show below the equivalence of the dielectric response functions obtained within the
CAR and CYL formulations.

For any coordinate basis the dielectric function is given by [20]

ε(k, ω) = 1 +
e2

ε0k2

∑
α;β

|Sβα(k)|2 f (Eα) − f (Eβ)

Eβ − Eα − h̄ω − i0
. (3.5)

Here the arguments of the Fermi–Dirac function f (E) are given by the eigenvalues of the free
particles, equation (2.7) in CAR or equation (2.14) in CYL. The matrix elements Sβα(k) are
defined by equations (2.8) and (2.15), respectively. Equation (3.5) has been evaluated in [20]
for CAR. We now apply equation (3.5) for calculation of the dielectric function in CYL. Using
equation (2.15) and the expansion of the 2D Dirac function with respect to the orthogonal
functions Fνν ′ ,

∞∑
ν;ν ′=0

ei(ν−ν ′)(θ−θ ′)Fνν ′(ζ )Fνν ′(ζ ′) = 2π

λ2
B

δ(k⊥ − k′
⊥), (3.6)

we arrive at the known expression for the dielectric function of the magnetized quantum
plasma obtained within CAR treatment [20]. This shows the complete conformity between
the CAR and CYL approaches.

4. Conclusions

In the present paper we have studied the electron–ion binary collisions in a quantizing magnetic
field. Using time-dependent perturbation theory the second-order energy transfer is calculated
within two different representations of the Landau wavefunctions, namely in Cartesian (CAR)
and cylindrical (CYL) coordinates. In CAR the electron state is given by the set of parameters
{n, σ, qy, qz} which includes the spin variable σ , the Landau level n and the electron momentum
components along and perpendicular to the external magnetic field, qz and qy respectively.
In this geometry the Schrödinger equation is reduced to the 1D harmonic oscillator equation.
The CYL representation is given by the set of parameters α = {ν; n; σ ; qz} with the angular
momentum ν. The Schrödinger equation is reduced to the 2D harmonic oscillator equation and
its solution essentially differs from the CAR. Using the CAR and CYL approaches we have
derived the classical limits for the corresponding energy transfers. Due to the differences in the
spatial symmetries the CAR and CYL energy transfers lead to different classical results. In the
classical limit �ECAR

α gives the transport cross-section and does not depend on the classical
impact parameter. The second energy transfer, �ECYL

α , represents the classical energy transfer
doubly averaged with respect to the phase and the distance along the trajectory of the electron
guiding centre. It depends on the impact parameter s. Moreover it has been shown that for
ν � 0 the role of the quantum mechanical ‘impact parameter’ plays the quantum number n
according to n → s2

/
2λ2

B . For ν < 0 we obtain n − ν → s2
/

2λ2
B . Obviously, the CYL

treatment displays the transition to the classical limit in more detail than CAR. Finally, we
have shown the identity of the quantum dielectric functions obtained within CAR and CYL
treatments.
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Appendix. Classical limit for the function Fnn′ (ζ)

In this appendix we give a detailed derivation of the classical limit of the function Fn;l+n(ζ )

with fixed l and n → ∞, ζ → 0 but nζ = c2/4 = const. We express the Laguerre polynomials
through the confluent hypergeometric sum [21] which results for the functions Fn;l+n(ζ ), using
equation (2.9), in

Fn;l+n(ζ ) =
[
�(n + l + 1)

�(n + 1)

]1/2

ζ l/2 e−ζ/2
n∑

k=0

�(−n + k)

�(−n)

1

�(k + l + 1)

ζ k

k!
, (A.1)

where �(x) is the Euler function. For forthcoming consideration the following limit will be
useful:

�(q + k)

qk�(q)

∣∣∣∣
q→∞

= 1 +
k2 − k

2q
+ O

(
1

q2

)
. (A.2)

Here k is an arbitrary but fixed number. Using the last relation and the standard representation
of the Bessel functions [21] in the limits n → ∞, ζ → 0 but nζ = c2/4 = const
equation (A.1) becomes

Fn;l+n(ζ )|n→∞; ζ→0 = Jl(c) + ζPl(c) + O(ζ 2), (A.3)

where Pl(c) = ((l + 1)/c)J ′
l (c). The function Ql in equation (2.11) is given by Ql(c) =

2Jl(c)Pl(c).
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